Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Matthias Zeller, Allen D. Hunter* and Cynthia L. Perrine

Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA

Correspondence e-mail: adhunter@ysu.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in main residue
R factor $=0.046$
$w R$ factor $=0.131$
Data-to-parameter ratio $=18.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

p-Diisocyanotetramethylbenzene

p-Diisocyanotetramethylbenzene, $p-\mathrm{C}_{6}\left(\mathrm{CH}_{3}\right)_{4}(\mathrm{NC})_{2}$, crystallizes in the monoclinic space group $C 2 / c$. One-half of the molecule is crystallographically independent, with the other half being generated by an inversion centre located at the centre of the molecule.

Comment

In the course of our work on isonitrile-bridged and capped molybdenum complexes, we isolated and structurally characterized p-diisocyanotetramethylbenzene, (I). The bisisocyanide is located on an crystallographic inversion centre, with only one-half of the molecule crystallographically independent. Both crystallographically independent methyl groups show disorder of the H atoms; these have been refined as idealized disordered methyl groups with the two positions rotated from each other by 60° and the site distributions have been refined to be approximately 0.90:0.10 (2) and $0.72: 0.28$ (2). Bond lengths and angles are in the expected ranges for aromatic isonitriles.

(I)

The compound was found to be isostructural with its cyanoisomer, dicyanodurene, $p-\mathrm{C}_{6}\left(\mathrm{CH}_{3}\right)_{4}(\mathrm{NC})_{2}$ (Britton \& Van Rij, 1991). Cell parameters and the orientation of the molecules are essentially identical.

Experimental

1,4-Diisocyano-2,3,5,6-tetramethylbenzene was synthesized from the corresponding formamide by reacting tetramethyl- p-phenylenediamine with 75% formic acid under reflux for two hours. Addition of water precipitated the formamide, which was washed with water until neutral and dried in vacuo. The isocyanide was synthesized as described by Efraty et al. (1980) for 1,4-diisocyanobenzene. The isocyanide was purified by sublimation in vacuo. Single crystals were grown by sublimation in vacuo.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \\
& M_{r}=184.24 \\
& \text { Monoclinic, } C 2 / c \\
& a=17.1518(17) \AA \\
& b=5.1324(5) \AA \\
& c=12.3670(12) \AA \\
& \beta=112.010(2)^{\circ} \\
& V=1009.32(17) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

Received 28 August 2003
Accepted 10 September 2003
Online 7 October 2003

Data collection

Bruker AXS SMART APEX CCD
diffractometer
ω scans
Absorption correction: none
4935 measured reflections
1257 independent reflections
1181 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.080$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-22 \rightarrow 21$
$k=-6 \rightarrow 6$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.131$
$S=1.05$
1257 reflections
69 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0698 P)^{2}\right. \\
& \quad+0.6662 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.016 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL } \\
& \text { Extinction coefficient: } 0.011(4)
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.1628(14)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.5106(13)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.4045(12)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.5105(13)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.4008(13)$	$\mathrm{C} 2-\mathrm{C} 4^{\mathrm{i}}$	$1.4065(13)$
$\mathrm{C} 3-\mathrm{C} 2$	$1.4070(13)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$178.30(10)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$121.39(8)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$117.65(9)$	$\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 4-\mathrm{C} 6$	$120.69(9)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 5$	$121.14(8)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 4^{\mathrm{i}}$	$117.59(8)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5$	$121.20(9)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$117.99(8)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 2^{\mathrm{i}}$	$117.92(9)$	$\mathrm{C} 4^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 3$	$124.42(9)$

Symmetry code: (i) $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$.
Both crystallographically independent methyl groups show rotational disorder. The H atoms were refined as idealized disordered methyl groups, with the two positions rotated from each other by 60°. They were geometrically positioned with a fixed $\mathrm{C}-\mathrm{H}$ distance of $0.98 \AA$. Isotropic displacement parameters are 1.5 times $U_{\text {eq }}$ of the parent atom. The major site occupancies were refined to be approximately 0.90 (2) and 0.72 (2).

The s.u. values of the cell parameters are derived from the software, and are unreasonably small (Herbstein, 2000).

Data collection: SMART (Bruker 1997-2000); cell refinement: SAINT-Plus (Bruker 1997-1999); data reduction: SAINT-Plus;

Figure 1

Molecular structure of (I), showing 30% probability displacement ellipsoids.
program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

MZ was supported by NSF grant 0111511, CLP by ACS PRF grant 37228-B3 and the diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU.

References

Britton, D. \& Van Rij, C. (2000). Acta Cryst. C47, 416-418.
Bruker (1997-1999). SAINT-Plus. Version 6.02. Bruker AXS Inc, Madison, Wisconsin, USA.
Bruker (1997-2000). SMART. Version 5.625 for WNT/2000. Bruker AXS Inc, Madison, Wisconsin, USA.
Efraty, A., Feinstein, I., Wackerle, L. \& Goldmann, A. (1980). J. Org. Chem. 45, 4059-4061.
Herbstein, F. H. (2000). Acta Cryst. B56, 547-557.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

